
CMSC 603 Assignment 2: KNN on Cuda
Darshini Mahendran

Computer Science VCU
Richmond, USA

mahendrand@vcu.edu

Abstract—K-Nearest Neighbors algorithm (KNN) is a classifi-
cation algorithm and one of the most used learning algorithms. In
high dimensional spaces, the run time of the KNN is considered
as a bottleneck. In this project we address this problem by
performing the KNN on the GPU (Graphics Processing Unit)
using CUDA. Different kernel configurations are implemented to
reduce the run time and the performance is analyzed using the
NVIDIA profiler.

Index Terms—KNN, GPU, Cuda, parallelization

I. INTRODUCTION

KNN is a simple classification algorithm. The algorithm
is based on the feature similarity, it classifies a given data
point based on how closely out-of-sample attributes, it re-
sembles the training set. Three different kernel configurations
are implemented: 1D grid and 1D-x block mapping (thread
per instance), 1D grid and 1D-x block mapping with shared
memory (block per instance), 1D grid of 2D blocks mapping
(column per instance).The number of k is taken as a user
parameter. Code is optimized as both the accuracy of the
sequential and MPI and Cuda versions are same. The grid
and block size are determined depending on the number of
threads assigned per block.

II. IMPLEMENTATION

A. 1D grid and 1D-x block mapping

First approach is a 1D grid with 1D-x block mapping. For
a given dataset, each thread is assigned to perform KNN for a
particular instance. Number of threads are equal to the number
of instances. Depending on the number of threads per block,
the block number is determined. The mapping for Approach
1 is shown in Fig. 1

B. 1D grid and 1D-x block mapping with shared memory

Second approach, is 1D grid and 1D-x block mapping
with shared memory. For a given dataset, each block is
assigned to perform KNN for a particular instance. Euclidean
distance calculation of one instance with all other instances are
divided between the threads in each block. Since all threads
in the block are performing the euclidean distance calculation
simultaneously, the distance matrix is initialized in the shared
memory where all threads were synchronized before selecting
the k number of nearest of elements. Since multiple threads are
assigned to one instance instead of one thread the processing

time is reduced which makes this mapping more efficient than
the Approach 1. The mapping is shown in the Approach 2 in
Fig. 1

C. 1D grid of 2D blocks mapping

Third approach is a 1D grid divided into 2D blocks and are
indexed using row and column values. For a given dataset,
each column is assigned to perform KNN for a particular
instance. The euclidean distance calculation performed by
different threads are written to a 2D matrix in the shared
memory and read into a temporary array while selecting the
k number of nearest of elements. Since one block is assigned
to more than one instance to perform KNN, this reduces the
time compared to the approach where a thread is assigned
to an instance but not than the approach where each block is
assigned one instance. The mapping is shown in the Approach
3 in Fig. 1

Fig. 1. Mappings of the different kernel configurations used. The instances
are denoted by E .

D. Dataset

• Small dataset has 336 instances and when k = 10 the
algorithm gives the highest accuracy of 0.8363.

• Medium dataset has 4898 instances and when k = 2 the
algorithm gives the highest accuracy of 0.6615.

III. RESULTS AND DISCUSSION

Table. I shows the run time of the single-threaded, MPI and
GPU versions in maple server considering the two datasets and
the run time of the GPU approaches are compared with the
best run time obtained with MPI processes for both datasets
respectively (small dataset - 4 processes, medium dataset -
32 processes). The results show that the runtime of all 3 GPU



TABLE I
COMPARISON OF THE RUNTIME WHEN KNN IS EXECUTED IN THE MAPLE

SERVER

Small dataset Medium dataset
Single-threaded 79ms 11164 ms
MPI - 4 processes 297 ms 3790 ms
MPI - 32 processes 510 ms 1220 ms
GPU - approach 1 5.65 ms 35.27 ms
GPU - approach 2 0.71ms 89.12 ms
GPU - approach 3 3.85 ms 596.75 ms

TABLE II
COMPARISON OF THE RUNTIME FOR DIFFERENT NUMBER OF THREADS

PER BLOCK FOR THE GPU APPROACHES ON SMALL DATASET.

threads/ block Approach 1 Approach 2 Approach 3
2 6.18 ms 2.32 ms 3.90 ms
4 6.18 ms 1.43 m -
8 5.68 ms 0.97 ms -
16 5.67 ms 0.71 ms -
32 5.82 ms 0.60 ms -

approaches are significantly lower than the single-threaded and
the MPI versions. Among the GPU approaches, approach 2 has
the least runtime. Approach 2 has a 1D grid and 1D-x block
mapping with shared memory where each block performs
KNN for an instance, since all threads in a block is assigned
for one instance this appraoch is more efficient. Approch 3 has
the second lowest runtime as more than one thread is assigned
for one instance whereas the approach 1 is the least efficient
as it only 1 thread is assigned for one instance.

IV. ANALYZE THE PERFORMANCE

More experiments were performed to further analyze the
performance of each approaches. Small dataset was used for
the experiments.

Table. II shows the runtime of each approach when the
number of threads of each block is changed. From the results
we can see the change in number of threads doesn’t affect the
performance of Approach 1 as one thread is assigned to one
instance and the performance doesn’t depend on the number of
blocks. In Approach 2 we can a gradual drop in the runtime,
this is because in this approach each block is assigned for
an instance. Therefore, more threads in a block will increase
the performance as all threads run simultaneously performing
KNN for an instance. For Approach 3 we cannot assign more
than 2 threads per block because we can not allocate more
shared memory in a block than the limit. Since we are writing
the intermediate 2D distance matrix to the shared memory,
the memory capacity is limited. This is a disadvantage of this
approach. From this experiment, we can conclude Approach
2 is most efficient.

The NVIDIA Visual Profiler is a cross-platform perfor-
mance profiling tool that delivers developers vital feedback for
optimizing CUDA C/C++ applications. It performs automated
analysis of the application to identify performance bottlenecks
and get optimization suggestions that can be used to improve

Fig. 2. Performance of the GPU approaches visualized using the NVIDIA
profiler on the small dataset .

performance. Fig. 2 shows the results when running the
profiler on the 3 GPU approaches. Larger amount of time goes
to allocate memory initially and KNN computation takes less
time comparatively. If we consider the KNN computation part
in all the approaches we can see Approach 2 takes less time for
computation of KNN. Therefore we can conclude, Approach
2 is more efficient.

CODE

Code for the above implementation can be found in
the following repository: https://github.com/SamMahen/2019-
603-A2-Mahendran


