NLPatVCU CLEF 2020: ChEMU Shared Task System Description

Darshini Mahendran, Gabrielle Gurdin, Nastassja Lewinski, Christina Tang & Bridget T. McInnes

Virginia Commonwealth University

Outline

- 1. Introduction
- 2. Data
- 3. Methods
- 4. Results and Error Analysis
- 5. Conclusion and Future Work

Introduction

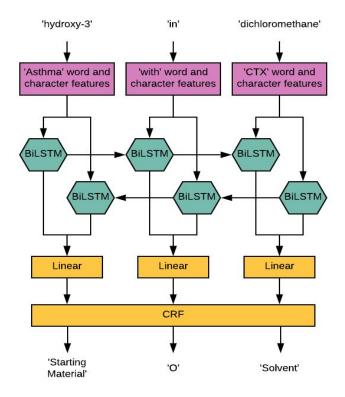
ChEMU 2020: Cheminformatics Elsevier Melbourne University

- Shared task for Information Extraction from Chemical Patents
- ChEMU proposes two key information extraction tasks over chemical reactions from patent documents
- Tasks:
 - Task 1: Named Entity Recognition (NER) involves identifying chemical compounds as well as their types in context, i.e., to assign the label of a chemical compound according to the role which the compound plays within a chemical reaction
 - Task 2: Event Extraction (EE) over chemical reactions involves event trigger detection and argument recognition.

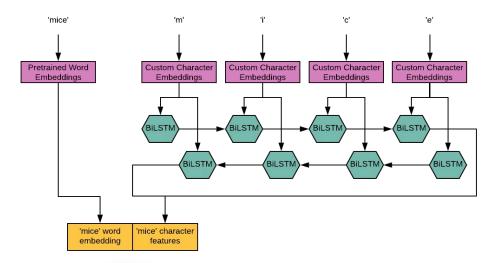
Data

Data

Events	Entities	Instances	REACTION_STEP	WORKUP
	EXAMPLE_LABEL	886	-	-
	REACTION_PRODUCT	2052	1101	11
ARG1	STARTING_MATERIAL	1754	1747	4
Angi	REAGENT_CATALYST	1281	1272	-
	SOLVENT	1140	1134	4
	OTHER_COMPOUND	4640	161	4097
	YIELD_PERCENT	955	937	1
ADOM	YIELD_OTHER	1061	1043	2
ARGM	TIME	1059	839	81
	TEMPERATURE	1515	813	242
/T.:	REACTION_STEP	3815		
Triggers	WORKUP	3053	1	



Method: Named Entity Recognition


NER & Trigger Detection: Algorithm

- Bidirectional Long Short Term Memory (Bi-LSTM) units with a Conditional Random Field (CRF) output layer
- BiLSTMs type of Recurrent Neural Network
 - 2 sources of input: their current state and their past states
- A linear-chain CRF is used to assign the final class probability

NER & Trigger Detection: Feature Representation

ege of Engineering

Input to our model is pre-trained word embeddings in combination with character embeddings

- Word2vec embeddings
 - ChemPatent: Trained over a collection of 84,076 full patent documents
 - WikiPubMed: Trained over Wikipedia and PubMed articles
- Character embeddings learned using a biLSTM and concatenated into the word2vec embedding

Method: Event Extraction

Event Extraction

- To identify trigger words NER system discussed previously
- To identify the chemical arguments between the trigger words and the entities
 - Rule-based Method
 - Convolutional Neural Network (CNN)-based Method

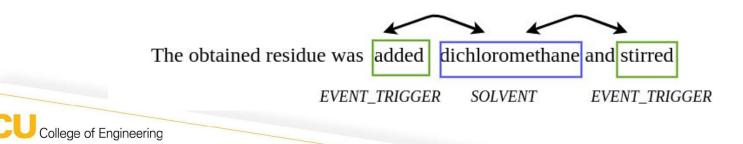
Rule-based method

- Utilizes co-location information of trigger words to determine with respect to entity if the word is referring to trigger word or not
 - Breadth-first search (BFS) algorithm is used here for traversal
 - For each entity, both sides are traversed until the closest occurrence of the trigger word is found using the provided span values of the entities

Rule-based

Different traversal techniques are applied and best traversal technique for each relation type is determined

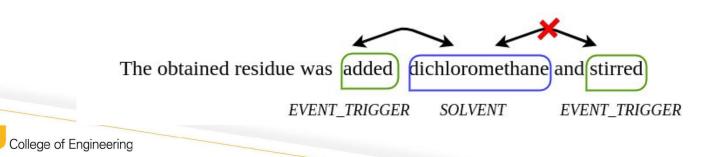
- traverse left side only
- traverse right side only
- traverse left first then right
- traverse right first then left
- traverse both sides within a sentence

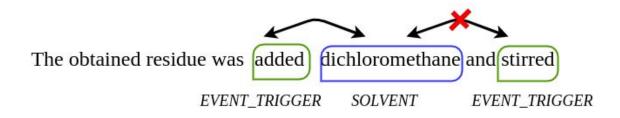


Rule-based

Different traversal techniques are applied and best traversal technique for each relation type is determined

- traverse left side only
- traverse right side only
- traverse left first then right
- traverse right first then left
- traverse both sides within a sentence




Rule-based

Different traversal techniques are applied and best traversal technique for each relation type is determined

- traverse left side only
- traverse right side only
- traverse left first then right
- traverse right first then left
- traverse both sides within a sentence



CNN-based

Algorithm:

• for each *Trigger word-Entity pair* we perform a binary classification

Feature representation:

 ChemPatent - Trained over 84,076 patents

Results & Analysis

Evaluation Metrics

- **Precision:** ratio between correctly predicted mentions over the total set of predicted mentions for a specific entity
- **Recall:** ratio of correctly predicted mentions over the actual number of mentions
- **F-1 score:** harmonic mean between precision and recall
- For Task 1, we report both the exact and relaxed results for each entity category
 - *exact evaluation:* two annotations are equal only if they have the same tag with exactly matching spans
 - *relaxed evaluation:* two annotations are equal if they share the same tag and their spans overlap with each other.

Task 1: NER Results (Run 1)

Run 1 - Model trained over the training data using the biLSTM+CRF with the CheMU Patent embeddings

	10	Exact			Relaxed	
Entity	Р	R	F_1	Р	R	F_1
EXAMPLE_LABEL	0.94	0.95	0.94	0.94	0.98	0.96
OTHER_COMPOUND	0.9	0.82	0.86	0.97	0.99	0.98
REACTION_PRODUCT	0.84	0.83	0.83	0.9	0.97	0.94
REAGENT_CATALYST	0.85	0.9	0.87	0.88	0.99	0.93
SOLVENT	0.91	0.94	0.93	0.92	1	0.96
STARTING_MATERIAL	0.85	0.84	0.85	0.91	1	0.95
TEMPERATURE	0.63	0.63	0.63	0.99	0.99	0.99
TIME	0.88	0.88	0.88	1	1	1
YIELD_OTHER	0.95	0.98	0.97	0.96	1	0.98
YIELD_PERCENT	0.99	0.99	0.99	1	1	1
System	0.87	0.85	0.86	0.95	0.99	0.97

Task 1: NER Results (Run 2)

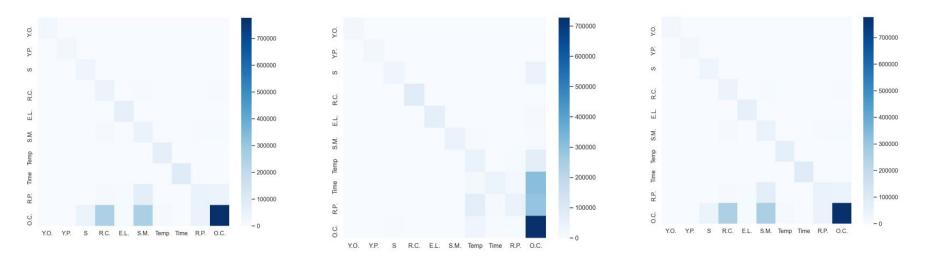
Run 2 - Model trained over the training data using the biLSTM+CRF with the WikiPubmed embeddings

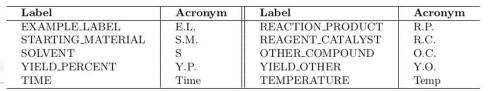
		Exact			Relaxed	
Entity	Р	R	F_1	Р	R	F_1
EXAMPLE_LABEL	0.98	0.93	0.95	0.98	0.98	0.96
OTHER_COMPOUND	0.89	0.84	0.87	0.95	0.98	0.96
REACTION_PRODUCT	0.83	0.82	0.82	0.9	0.97	0.94
REAGENT_CATALYST	0.86	0.89	0.87	0.89	1	0.43
SOLVENT	0.94	0.91	0.93	0.95	0.99	0.97
STARTING_MATERIAL	0.85	0.83	0.84	0.91	0.99	0.95
TEMPERATURE	0.63	0.63	0.63	0.99	0.99	0.99
TIME	0.88	0.87	0.87	1	0.99	1
YIELD_OTHER	0.97	0.98	0.97	0.98	0.98	0.98
YIELD_PERCENT	1	0.99	0.99	1	0.99	0.99
System	0.87	0.85	0.86	0.95	0.98	0.96

Task 1: NER Results (Run 3)

Run 3 - model trained over the training and development data combined with the biLSTM+CRF using the WikiPubmed embeddings.

		Exact			Relaxed	
Entity	Р	R	F_1	Р	R	F_1
EXAMPLE_LABEL	0.96	0.94	0.95	0.95	0.96	0.95
OTHER_COMPOUND	0.9	0.84	0.87	0.96	0.98	0.97
REACTION_PRODUCT	0.8	0.82	0.81	0.88	0.98	0.93
REAGENT_CATALYST	0.9	0.88.	0.89	0.93	0.99	0.96
SOLVENT	0.94	0.93	0.94	0.94	0.99	0.96
STARTING_MATERIAL	0.88	0.86	0.87	0.92	0.99	0.95
TEMPERATURE	0.63	0.63	0.63	0.99	0.99	0.99
TIME	0.88	0.88	0.88	1	1	1
YIELD_OTHER	0.98	0.98	0.98	0.98	0.99	0.98
YIELD_PERCENT	0.99.	0.99	0.99	0.99	0.99	0.99
System	0.87	0.86	0.87	0.95	0.98	0.97





Task 1: Error Analysis

eae of Engineering

Confusion matrices for all 3 runs over the testing dataset (rows : annotated entities , columns: predicted entities)

Task 2: Event extraction (Run 1)

Run 1 - CNN-based system with trigger words identified using NER system trained with CheMU patent embeddings

Argument	Trigger	Entity	# Train	Р	R	F_1
		OTHER_COMPOUND	161	0.00	0.00	0.00
	1	REACTION_PRODUCT	1101	0.92	0.96	0.94
	REACTION_STEP	REAGENT_CATALYST	1272	0.78	0.69	0.74
		SOLVENT	1134	0.64	0.74	0.69
ARG1	1	STARTING_MATERIAL	1747	0.82	0.43	0.56
		OTHER_COMPOUND	4097	0.73	0.29	0.42
	WORKUP	REACTION_PRODUCT	11	0.00	0.00	0.00
	WORKUP	SOLVENT	4	0.00	0.00	0.00
		STARTING_MATERIAL	4	0.00	0.00	0.00
		TEMPERATURE	813	0.83	0.30	0.44
	DEACTION STEP	TIME	839	0.78	0.73	0.75
	REACTION_STEP	YIELD_OTHER	1043	0.93	0.96	0.95
ARGM		YIELD_PERCENT	937	0.91	0.94	0.92
	WORKUP	TEMPERATURE	242	0.56	0.08	0.14
	WORKUP	TIME	81	0.00	0.00	0.00
	S	ystem	pr	0.81	0.54	0.65

Task 2: Event extraction (Run 2)

of Engineering

Run 2 - Rule-based system with trigger words identified using NER system trained with CheMU patent embeddings

Argument	Trigger	Entity	# Train	Р	R	F_1
		OTHER_COMPOUND	161	0.02	0.63	0.04
		REACTION_PRODUCT	1101	0.82	0.78	0.80
	REACTION_STEP	REAGENT_CATALYST	1272	0.52	0.35	0.42
		SOLVENT	1134	0.81	0.55	0.65
ARG1		STARTING_MATERIAL	1747	0.63	0.31	0.41
		OTHER_COMPOUND	4097	0.90	0.86	0.88
	WORKUP	REACTION_PRODUCT	11	0.01	1.00	0.02
	WORKUP	REAGENT_CATALYST	-	0.00	0.00	0.00
		SOLVENT	4	0.07	1.00	0.14
		STARTING_MATERIAL	4	0.04	1.00	0.08
		TEMPERATURE	813	0.77	0.89	0.83
	REACTION_STEP	TIME	839	0.85	0.93	0.89
	REACTION_STEP	YIELD_OTHER	1043	0.83	0.80	0.81
ARGM		YIELD_PERCENT	937	0.86	0.85	0.85
	WORKUP	TEMPERATURE	242	0.66	0.81	0.73
	WORKUP	TIME	81	0.36	0.53	0.43
		YIELD_OTHER	2	0.00	0.00	0.00
		YIELD_PERCENT	1	0.00	0.00	0.00
	S	ystem		0.51	0.72	0.60

Task 2: Event extraction (Run 3)

Run 3 - Rule-based system with trigger words identified using NER system trained with WikiPubmed embeddings

Argument	Trigger	Entity	# Train	Р	R	F_1
		OTHER_COMPOUND	161	0.02	0.63	0.04
		REACTION_PRODUCT	1101	0.82	0.78	0.80
	REACTION_STEP	REAGENT_CATALYST	1272	0.52	0.35	0.42
		SOLVENT	1134	0.81	0.54	0.65
ARG1		STARTING_MATERIAL	1747	0.62	0.30	0.40
		OTHER_COMPOUND	4097	0.90	0.86	0.88
	WORKUP	REACTION_PRODUCT	11	0.01	1.00	0.02
	WORKUP	REAGENT_CATALYST	-	0.00	0.00	0.00
		SOLVENT	4	0.07	1.00	0.13
		STARTING_MATERIAL	4	0.03	1.00	0.07
		TEMPERATURE	813	0.85	0.89	0.82
	REACTION_STEP	TIME	839	0.78	0.93	0.89
	REACTION_STEP	YIELD_OTHER	1043	0.82	0.80	0.81
ARGM		YIELD_PERCENT	937	0.86	0.85	0.85
	WORKUP	TEMPERATURE	242	0.61	0.85	0.71
	WORKUP	TIME	81	0.36	0.60	0.45
		YIELD_OTHER	2	0.00	0.00	0.00
		YIELD_PERCENT	1	0.00	0.00	0.00
	S	ystem		0.51	0.71	0.59

Task 2: Error Analysis

Error analysis for the CNN model trained with ChemPatent embedding

Argument	Trigger	Entity	\mathbf{tp}	\mathbf{fp}	\mathbf{fn}	\mathbf{fpm}	fnm
		OTHER_COMPOUND	0	0	63	0	11
		REACTION_PRODUCT	436	36	16	11	3
	REACTION_STEP	REAGENT_CATALYST	350	97	155	17	8
		SOLVENT	316	179	111	16	7
ARG1		STARTING_MATERIAL	305	68	406	12	9
Angi		OTHER_COMPOUND	516	192	1234	23	73
		REACTION_PRODUCT	0	0	4	0	0
	WORKUP	REAGENT_CATALYST	2	2 C	1	<u></u>	2
		SOLVENT	0	0	2	0	0
		STARTING_MATERIAL	0	0	1	0	0
		TEMPERATURE	151	30	352	15	15
	REACTION STEP	TIME	300	87	113	16	10
	REACTION_STEP	YIELD_OTHER	418	31	17	11	3
ARGM		YIELD_PERCENT	361	36	23	13	3
ARGM		TEMPERATURE	9	7	101	0	20
	WORKUP	TIME	0	0	43	0	13
	WURKUP	YIELD_OTHER	2	121	121	21 <u>-</u> 21	\simeq
		YIELD_PERCENT	-	-	-	-	-
	System	•	3162	763	2641	134	175

Task 2: Error Analysis

Arithmetic and Weighted arithmetic mean of the performance of the trigger words for each run

Tuiman	Entites	Arithmetic mean			Weight	ted arithr	netic mean
Trigger	Entity	Р	R	F_1	Р	R	F_1
	Run 1	0.73	0.64	0.67	0.81	0.69	0.73
REACTION_STEP	Run 2	0.68	0.68	0.63	0.73	0.63	0.66
	Run 3	0.68	0.67	0.63	0.73	0.63	0.65
	Run 1	0.14	0.04	0.06	0.70	0.28	0.40
WORKUP	Run 2	0.23	0.58	0.25	0.87	0.85	0.86
	Run 3	0.22	0.59	0.25	0.87	0.85	0.86

Comparison with the baseline

• Task 1:

	Exact				Relax	
	Р	R	F_1	Р	R	F_1
Run 1	0.87	0.85	0.86	0.95	0.99	0.97
Run 2	0.87	0.85	0.86	0.95	0.98	0.96
Run 3	0.87	0.85	0.87	0.95	0.98	0.97
Baseline	0.91	0.87	0.89	0.92	0.95	0.94

• Task 2:

	P	R	F_1
Run 1	0.81	0.54	0.65
Run 2	0.51	0.72	0.60
Run 3	0.51	0.71	0.59
Baseline	0.38	0.89	0.38

Conclusion & Future work

Task 1: Conclusions

- Evaluated 3 biLSTM+CRF models over different pre-trained word embeddings
 - models did not outperform the baseline model when evaluating exact span matches
 - models outperformed the baseline when evaluating in relaxed mode
- Errors primarily occurred because of issues with the model distinguishing between different entity labels
 - Example: mislabeling entities annotated as OTHER_COMPOUND for more specific labels, like REACTION_PRODUCT or STARTING_MATERIAL

Task 2: Conclusions

- Used a CNN-based model and 2 rule-based models to extract events
 - All 3 models outperformed the baseline model
 - CNN-based method outperforms the rule-based methods, especially with the REACTION_STEP classes as those classes have more instances to train on
 - Rule-based methods do not require training instances to train they perform better with WORKUP classes

Future Work

- Explore additional segment-CNN architectures
 - incorporate CRF layer while concatenating segments
 - incorporate biLSTM
 - incorporate transformer with attention mechanism
- Explore different feature representations :
 - Feature-based representation
 - incorporate semantic similarity, relatedness and association
 - Featureless representation
 - Character embeddings
 - Combine word and character embeddings
 - Contextual representation (e.g. BERT, ELMO)

